Structured Low Rank Approximation of a Bezout Matrix

نویسندگان

  • Dongxia Sun
  • Lihong Zhi
چکیده

The task of determining the approximate greatest common divisor (GCD) of more than two univariate polynomials with inexact coefficients can be formulated as computing for a given Bezout matrix a new Bezout matrix of lower rank whose entries are near the corresponding entries of that input matrix. We present an algorithm based on a version of structured nonlinear total least squares (SNTLS) method for computing approximate GCD and demonstrate the practical performance of our algorithm on a diverse set of univariate polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Low Multilinear Rank Approximation by Structured Matrix Low-Rank Approximation

We present a new connection between higherorder tensors and affinely structured matrices, in the context of low-rank approximation. In particular, we show that the tensor low multilinear rank approximation problem can be reformulated as a structured matrix low-rank approximation, the latter being an extensively studied and well understood problem. We first consider symmetric tensors. Although t...

متن کامل

Structured Low Rank Approximation

Abstract. This paper concerns the construction of a structured low rank matrix that is nearest to a given matrix. The notion of structured low rank approximation arises in various applications, ranging from signal enhancement to protein folding to computer algebra, where the empirical data collected in a matrix do not maintain either the specified structure or the desirable rank as is expected ...

متن کامل

Fast Low Rank Approximation of a Sylvester Matrix by Structured Total Least Norm

The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with a Sylvester matrix. In this paper, we present an algorithm based on fast Structured Total Least Norm(STLN) for constructing a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of given...

متن کامل

Exact Solutions in Structured Low-Rank Approximation

Structured low-rank approximation is the problem of minimizing a weighted Frobenius distance to a given matrix among all matrices of fixed rank in a linear space of matrices. We study the critical points of this optimization problem using algebraic geometry. A particular focus lies on Hankel matrices, Sylvester matrices and generic linear spaces.

متن کامل

Factorization Approach to Structured Low-Rank Approximation with Applications

We consider the problem of approximating an affinely structured matrix, for example a Hankel matrix, by a low-rank matrix with the same structure. This problem occurs in system identification, signal processing and computer algebra, among others. We impose the low-rank by modeling the approximation as a product of two factors with reduced dimension. The structure of the low-rank model is enforc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics in Computer Science

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007